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Let G be a finitely generated Fuchsian group of the first kind acting on the unit disk 4

and let § be the unit circle. If g is a M6bius transformation, represented by (% g )
(|e|2=|B]2 = 1) we write u(g) = 2(|a|?+|B|?). Let € S. Then thereis a constant ¢ > 0
so that for any 9 €$ which is not a parabolic fixed point of G the inequality

%
S A

—
< [1—28(8)] < ¢/n(e)
<>5 ~ has infinitely many solutions in G. This has been known for a long time (Hedlund’s
M= lemma).

I This can be significantly sharpened in the following manner. If G has parabolic
=O elements let ¢ be a fixed parabolic fixed point, otherwise let it be a fixed hyperbolic
E 8 fixed point of G. Then thereis ¢ > 0so that forany X > 2,9 €S thereis asolution g e G of

|n—8(8)| < ¢[y(Xn(g)) (& parabolic)
<cf/X (¢ hyperbolic)

with x(g) < X. From this we show that if w(x) is a decreasing function satisfying
w(2x)[w(x) = ¢ > 0 then the set

A={nes:|p—g(&)| < w(n(g))/n(g) is soluble for infinitely many ge G}
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528 S.J.PATTERSON

has measure 0 or 21 as Zw(2") converges or diverges. Finally we show that the set
B = {yeS: thereis ¢ > 0so that |y —g()| > ¢/u(g) for all ge G},

has Hausdorff dimension 1, although by the result above it has measure 0.

These results are analogous to various theorems in the metrical theory of numbers,
and they reduce to these if G is taken to be the modular group. The proofs involve a
close study of the geometry of the action of G on 4.

1. INTRODUCTION

This paper is concerned with the geometric and measure-theoretic structure of the limit set of a
Fuchsian group. By a Fuchsian group we shall understand a finitely generated Fuchsian group;
we shall not attempt to investigate the pathologies of infinitely generated Fuchsian groups.

The present work splits into two parts. Up to § 7 we give a complete account of the geometry of
the action of a Fuchsian group both on the open disk and on the unit circle. Although this has
been studied in the past, the account given here is more detailed and systematic than anything
in the literature. The detail, which at times may seem excessive, is required for applications in
the second part.

The other part §§8-10, adopts the following point of view. The rational numbers can be
characterized as the parabolic vertices of the modular group I'. The theory of diophantine
approximation (see, for example, Cassels 1965) gives ways of describing how well the rationals
approximate a given number. The corresponding question for a Fuchsian group is: how well do
the images of a distinguished point approximate an arbitrary limit point?

This problem has already been raised by (Rankin 1957) and (Lehner 1964), and to some
extent answered by them. The first part of this paper contains a complete solution. In the second
part we push the analogy further and seek theorems concerning the behaviour of almost all
points —that is, corresponding to ‘metric number theory’. In fact we can obtain results almost
(but not quite) as sharp as their classical counterparts. Thisis carried out in § 9 and the structure
of the exceptional set is described in § 10. Of course, this is only meaningful for groups of the
first kind.

Fuchsian groups are usually denoted by G; only rarely shall we have to speak of more than
one at a time. They shall usually act on the unit disk 4; we shall only consider the action on the
upper half-plane H when we want to examine some part of the group and can display it by an
appropriate representation. For example, we will ofien examine a parabolic vertex by con-
jugating to H and making oo the parabolic vertex.

All Fuchsian groups will be finitely generated and non-elementary.

The limit set of G is denoted by Lg or L(G). G, is the subgroup of G fixing aeA and G,,
is the subgroup fixing a, b e A.

con (D) will denote the group of conformal transformations of D. If gecon (4) it is a bilinear

o

map and can be represented by a matrix (,3 é) (lee]2=|B]? = 1). We will write

#(8) = 2(|*+[BI?).
It is easy to see that n(gh) < p(g) p(h).

The basic properties of # may be found in (Beardon & Nicholls 1972).


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DIOPHANTINE APPROXIMATION IN FUCHSIAN GROUPS 529

The hyperbolic distance between a and & is denoted by [a, 4]. Also we shall set

1—ab|?

h(a,b) = | .
N (S Rl U
Then one finds that 1+cosh[a, b] = 2k(a, b)

and u(g) = 4h(0,(0)) — 2 = 2cosh[0, g(0)].

S will represent the unit circle. ¢j,¢,, ... are numbers (‘constants’), held fixed during an
argument.
Theorems, etc., will be numbered inside a section. So theorem 8.2 will mean theorem 2 of § 8.

2. GEOMETRY OF THE FUNDAMENTAL DOMAIN AND THE LIMIT SET

Let G be a Fuchsian group acting on 4. Then there is an (open) fundamental domain D in 4
so that

(a) 0D is a finite collection {u;} of geodesic arcs,

(6) {u;} splits uniquely into pairs u, u;, in such a way that there is v, € G so that u;, = y,(uz),
the y,, are distinct and generate G,

(¢) 0eD,

(d) ifu;,u, meet at peS then p is a parabolic vertex; u; = u;, and y;, generates G,,. No other
meets G{p}.

A justification of this can be found in Greenberg (1967).

Lgis aclosed subsetof §. Thus 2 = Lg (= §~ Lg) is open and so is a countable union of disjoint
intervals, say 2 = U ;. Weshallsay that 2; and 2, are equivalent if there is g € G'so that gQ; = Q.

J

It is clear, as Lg is invariant under G, that either g, = 2, or g2, n 2, = @. Now we have

‘THEOREM. There are only a finite number of equivalence classes of ;. There is a hyperbolic subgroup (but
no larger subgroup), G; say, preserving ;.

This is proved in Greenberg (1967) but it is not stated formally.

Let 9, 7; be the end-points of £; and let A; be that arc of a circle lying in 4, joining ;, 7},
making an internal angle @ > 0 with ;. The collection of all A; is a figure invariant under G as
G preserves {2,}, angles and orientation. Let 4; = /4,(a) be the open region between A; and Q;;
it is lens-shaped and we call it an a-lens. As G is non-elementary the 2; have distinct end-points
(consider the action of G; on §'~ £;) and the A; cannot intersect if & < }n. In particular, if @ < in
the A;(a) are disjoint and are permuted by G. Let Kg(a) = A~ U (). If o < §n, Ky() is
hyperbolically convex. !

The next point to note is that D n Kg(«) has finite (hyperbolic) area and if G has no parabolic
elements D n Kg(«) is relatively compact. This follows as the only infinite parts of D are those
adjacent to free sides (i.e. {€; n D}) and cusps. Any free side is in some A;. All this is a direct
consequence of the description of D given above.

Suppose now that G has parabolic elements and let p;, ..., p, be the parabolic vertices lying on
0D. We call an open disk contained in 4 and tangent to S at p a horocycle at p. Construct horo-
cycles C; at p;. Now refer this to H with p; = co. We know that the diameter of a horocycle
&(Cy) (g€ G, gp; # o) is bounded (Lehner 1964) and so we can find C; < C}, a horocycle at o so
that

(a) Cj meets no image of {Cj} under G other than C; (and hence no image of {Cy, Cj, ..., Ci},
other than C}, under G),

36-2
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(b) ifa < jn C, meets no A,(a).

(b) follows as the length of 2, is clearly bounded by the translation length of G,; hence the
height of 4, is bounded.

We can repeat this argument to each j. Thus

ProrostTiON 1. There is a horocycle C, at each parabolic vertex p and a §n-lens A; on each 2; so that
1. {C,, A;} are disjoint.
2. Cg(p) = g(Cp)
3. D~ (UC, u UA,) is relatively compact in A.
D i

4. D meets only a finite number of C,, and A;.

If p is any parabolic vertex then p = g(p;) for some j; then define C, = g(ij). Then the con-
struction above is sufficient to imply the proposition.

This completes the construction but it is worth while adding a few words about the philosophy.
We have cut D, or rather G~ 4 into several distinct pieces which are associated with either a free
side, or a parabolic vertex, or a compact subset of D. The first two have only an elementary group
attached to them and are hardly more complicated than objects associated to those groups. The
compact part is the most complicated in the sense that

m (G\(Kg (o) ~ chp)) =G

but it is greatly simplified in so far as it is compact. So we have separated physically distinct
sources of difficulty. This method will be systematically employed. Incidentally, in this context
parabolic vertices can be thought of as degenerate cases of intervals of discontinuity.

3. HEpLuND’S LEMMA AND A GENERAL APPROXIMATION THEOREM

Fix a Fuchsian group G. If 0 < £ < 3= then we call an arc of a circle, in 4, that meets S at an
angle £ a f-line; thus a geodesic is a §n-line.

TueoreM 1 (Hedlund’s Lemma). Given o (0 < o < %) there is a compact set K, in A with the following
property : if x is a non-parabolic limit point and A is a f-line from {e A to x (o < ff) then there is a sequence
of points (x,) on A and (g,,) in G so that x, — x and g,*(x,) €K,

Futher K, can be chosen independently of o if and only if G is of the first kind.

This is the classical theorem in the part of mathematics with which we are concerned. Although
itis essentially due to Hedlund it was Lehner who made it really explicit; see Lehner (1964). Our
proof is modelled on Lehner’s.

Proof. Let us start with a purely geometric observation. If L is a line through 0 making an
angle a with the positive half-line and C is a circle meeting R at an angle § where it > £ > «
then either L and C do not meet in H or at least one of the intersections of C with R is on the
positive half-line. The proof can be left to the reader.

If we transfer this to 4 and apply it to our situation we see that if the f-line A meets some
A;(a) then A can be extended to a f-line with an end-point in £2;. (To make the translation, map
the positive half-line to £2;.) Consequently A can meet at most one /;(a), for otherwise both end-
points would liein . So there is {’ on A so that the segment of A between {’ and x meets no A;(e);
call this segment A",
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Now let : K, = (DnKg)~ UC,
vy

where the union is taken over all p although only a finite number of C, meet D. The C, here are
as constructed in § 2. K, is compact in 4. Let y € A’. Then ye Kg() and so there is ge G so that

g7 (y) e D n Kg(a)-
Suppose that g=(y) € C,,. The part of A’ from y to x cannot lie in g(C,). So there is a point of A’
between y and x lying on a(g(C ))- Thus there is y € g(G,) so that y=1(A") meets 0K, and so K, at
the image of a point of A’ closer to x than y. Thus whether or not y € UC, thereis " on A’ between

y and x so that for ye G yy')eDn Kg(a)~UC, = K,
»

This shows that there is a sequence (x,) with the properties described in the theorem.

If G is of the first kind, K4(et) = 4 and K, is independent of . If G is of the second kind take
¥ to be an end-point of £; and A to be the a-line 04;(x) N 4. In this case as a decreases the
minimum (hyperbolic) distance of any image, under G, of A from 0 tends to co; this is a conse-
quence of the discussion of § 2. Thus no fixed compact set K can meet the images of A for all «
This completes the proof.

CororrLArY (Beardon). Let x be a non-parabolic limit point. There is a constant ¢ > 0, independent of x,

and a sequence (g,) in G so that
|8,(0) — x| < cp(ga)  (1(8n) = o0).

Proof. Let a, f = in and let { = 0. We construct the radius, i.e. 3n-line, to x. By the theorem
thereis a constant 7, independent of v, x,, - x along the radius, and g, € Gso that g, (x,,)| <7 < 1.
Clearly u(g,) — . Let u,, = g5*(x,). Now |x, —x| = 1—|x,|. But

|gn(4n) = 8a(0)] = |ga (1) |¥ |£7(0) | |4, — O]
< 61/ (gn)-
(1 - Ixnl) + (Cl/ﬂ(gn))
(1= 1a(0)]) +2e1/pe(gn).-
But 1—|g,(0)| < 4/u(g,) and the corollary follows.
The following general approximation theorem contains almost all of the previously known

results (with the exception of some of Rankin’s theorems). If it is interpreted on H and applied
to the modular group it gives Hurwitz’s theorem (without an explicit constant).

Thus lga(0) —x] <
<

THEOREM 2. Let x be a non-parabolic limit point and y e A. Then there is ¢ > 0 depending only on G so
that |x—g(y)| < ¢[p(g) can be solved for infinitely many geG.
We need a lemma.

LemMa. There is a finite open cover of Lg by intervals (L) (1 < j < n) in S so that for each I there is
hy€G so that d(I;, h;y(1;)) > O (d is the Euclidean distance).

VERAE)
Proof. As G is non-elementary for each x € L there is £, € G so that ,(x) # x. & is a diffeomor-
phism and so there is a neighbourhood I, of x so that d(I,, #,(1,)) > 0. {L} covers L; and as L is
compact we can take a finite subcover, which does what is required.

Proof of theorem. By the lemma there is a finite subset of G, H, say, and a constant ¢; > 0 so that
if xe Ly and y e 4 there is ke H, so that [A(x) —y| > ¢;. For weset d = min (d(}, ; (I;))) and then

cither d(y,I;) > 4d or d(y, h;(1;)) > &d. So if we set Hy = {I, hy, ..., k,}, ¢; = }d, they do what is
required.
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As pu(gh) < u(g) (), for g< G, heH,
cart(8) < p(gh™) < eapu(g)
for suitable ¢y, ¢3 > 0. As in the corollary above there is ¢, so that, for he H,,

|gn(}l_1(0)) gn(o I 64//1’(gn
By that corollary, with the sequence (g,) found there,

|gn}l—1 xl cS/ﬂ(gn

We may suppose that lim g,(c0) exists; the sequence accumulates on § and so, at least on a
subsequence, the limit exists. Let w be this limit. There is /€ H, so that |A(w) —y| > ¢; and so on
a further subsequence |hg, () —y| = }¢;. If u, = g, h7%,

4 1 4

un(y) —u,(0)| = w() +2 [y —uy (00| S ¢ pu(uy,)

The theorem is now proved as

|un(y) = 5| < ¢5/n(8n) + (4fer) [1e(wn) < (cac5+der?)[m(uy)-

This theorem is very general; too much so to be of much use. Our efforts will now be directed

towards a more useful result of the same type.

4. FURTHER GEOMETRICAL CONSIDERATIONS

In order to carry out the programme indicated above it is necessary to study the parabolic and
hyperbolic fixed points in some detail. The results and methods of this section form the basis for
doing this and all that follows.

To begin, let 5,7"€S, 5 # 5'. If 0 < @ < %n there are two distinct «-lines joining 7, %’; let
C(n,n": &) be the open region in 4 trapped between these. If the reader finds this description
unsatisfactory he is referred to the next section where he will find an analytic description. If we
make the construction on H, C(0,00; ) is the cone {a < arg (z) < n—a}. Note that there is a
unique #n-line joining %, 7’; this is called the axis of , 5’

If H is an elementary hyperbolic group it has two fixed points, 7, 9" say. These determine
C(n,%'; &). On the other hand C(y,7’; «) is invariant under con (4),,..

Let us introduce now the Poisson kernel,

1—]zJ?
[Nk
The set C(p,d) = {z|P(z,p) > d-}(p€eS, d > 0) is a horocycle at p. It has diameter

k(d) = 2d/(1+d).

P(z) = (ze4, LeS).

The vital link between geometrical and approximation problems is given by the following
sequence of lemmas. They involve only simple geometry and we relegate the proofs to the next
section.

LemMA 1. Let xe A, peS. There are absolute constants ¢, ¢’ so that
(i) if xeClp,d) then |x—p| < cy/((1~|x])d)
(ii) if x¢ C(p,d) then |x—p| > ¢’ J((1—|x|) d)
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LeMMA 2. Let 0 < o < m,xed,n, 9" €S (g # 7'). There are constants c, ¢, ¢", depending only on & so
that

(i) ifxeC(n,y'; a) then
min (g —x|, [9"—[) <e(1=|x]) <|lp—7],
(ii) f x¢Cn, 9" @) then
min (|7 —x|, |9 —x|) > ¢"min (1~ |x[), |y —7’]).

LEMMA 3. Let py, po€S. There are absolute constants c,c’ so that

() if Clpr, d) and C(py, dy) meet
’[’1 —I’zl <¢ «/(dl dy),

(ii) if C(py, dy) and C(py, dy) do not meet
|p1—p2| > ¢’ 4/(dydy).

Lemma 4. Let 0 < a < 41,8, &', m,m" €S. There are constants ¢, ¢’ depending only on o so that
() if Cln,u's @) and C(L,&'; ) meet

min ([ =&, [7" =&, [1 =&, 7= &'|) < emin (Jn—7'], [{=L')),
(i) ¢f C(n,y'; o) and C(&, {'; o) do not meet

win (|7 =&, |9 =&, [1=¢, |7 =) > ¢'min (g -9’, |- &]).
Moreover, as oo — 0, ¢’ — oo.
LemMA 5. Let 0 < o < §m, 7,9, peS. Then there are constants ¢, ¢’ depending only on o so that
(i) f C(p,n'; @) and C(p,d) meet
min (|9 —p|, |7 = p|) < cmin (d,{/(d|n-7])),
(i) if C(,n"; a) and C(p,d) do not meet

min (|7 —pl, |7'~#]) > ¢'min (d, J(d |y —7'])).

Lemma 6. Let §,8',9,m' €S be distinct. Suppose that the axes of &, &' and of 1,7’ meet at an angle ¢.
Then there are constants ¢, ¢’ depending only on ¢ so that

¢ min (|7—7'|, [¢~¢']) < min (|9 —&], |7' =&, [n =&, [’ =¢]) < emin (jg -], |~ &)
This completes the main sequence of lemmas. We now need some basic information on how our
objects interact with a Fuchsian group G. So, fix such a group, G.

As the notion will recur from now on we make the following definition. Let P be the set of
parabolic vertices of G. A set of horocycles {C} (p€ P) is called admissible if Cyy = g(C,y).

Proposition 2.1 affirms the existence of such sets with several extra restrictions.

If{C,} is an admissible set of horocycles we define d,, by C(p,d,) = C,. Proposition 2.1 asserts
that we can find an admissible set of horocycles with d, < 1, peP; d, < 1 is equivalent to
0¢C(p,d,).

Let {C}} be another admissible set of horocycles, and C(p,d;) = C;. Then from the identity

P(z,) _ P(y(2),y(8) i
Plw,0) ~ Ply(w),y@) 7o) (1)

we deduce that Ayl Byy = dylds,. (2)
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There is a finite set py, ..., p,€ P so that, if pe P, p = g(p;) for some p;, and some g€ G. Thus, as

d <1

P > !;(pj) = dalo]' dg(pj)/ dpj
< dy Jd,, < max (d,/d,).

Thus {d,|p € P} is bounded above. o

Now we need some new notation. If / is a subgroup of G we form a subset of G, G||H, which
is aset of representatives of the cosets {g/|g € G} so chosen thatif g € G| H, he H then u(g) < w(gh).
There is some ambiguity in this choice but it will not matter.

If His a cyclic hyperbolic or parabolic group (the only cases of interest to us) there is a unique
group H, H < H < con (4), with an isomorphism 0: H— R, 0(H) = Z. If H is parabolic,
#(g0=1(t)) is a positive quadratic function in € R. If H is hyperbolic #(g0-(f)) has the form
et 4+ fe ¥+ y(a, f > 0). In either case the minimal value for t€Z is taken on at most two
integers. In other words, there are at most two elements of g/ which satisfy the defining property
of an element of G| H.

LemMa 7. Let {C,|pe P} be an admissible set of horocycles, C, = C(p,d,). Fix peP. Then there is
¢ > 0, depending only on G and p, so that

(i) dpcﬁl S dg(p)/l‘(g) (gEG)s

(ll) dpc > dg(p)lu“(g) (gGG”Gp)

LemmA 8. Let H be a hyperbolic subgroup of G and let n,7'" be its fixed points. There is ¢ > 0, depending
on H, so that

(1) et <ule)lgn -] (geG),

(i) e>p(g)le) —g()  (¢eGlH).

Proofs. The proofs are similar. We prove lemma 7 and only indicate the modifications necessary
for lemma 8.

Let {C},|p€ P} be a fixed admissible set of horocycles. We shall show that, for some constant c,
depending only on p,

(i) ¢t <dpule) (ge6),

() > dgpule)  (2eG]G,),
where d is defined by C; = C(g, d,). This will be sufficient to prove the lemma in view of (2).

Let x be the summait of C; i.e. the point of 0C;, closest (hyperbolically) to 0. This always exists
and is the point of 9C, in 4 which meets the diameter of 4 through p. Then g(x) lies on 0C,(,,. Note
that gG,g~! = G, preserves gC, = Cyy.

Given y,ze0C,, there is he G, so that [y, h(z)] < ¢, for a suitable ¢,. So also if y*, z* €0C,,
there is 2* € gG, g1 so that [y*, 2% (z*)] < ¢;. In particular, if x* is the summit of C, there is
h*egG,g* so that [x*,h*g(x)] < ¢;. Let h = g7h*geG,. Then [x*, gh(x)] < ¢;. Let ¢, = [0, x].

"Then [0,x%] < [0,g(x)] (definition of summit)
< [0,g(0)] +¢, (all geG).
Also [0,x*] > [0, gh(x)] —¢, (h as above)
> [0,8h(0)] — (e +62).
These imply [0,x%] —¢y < ’Ibrelgj [0,87(0)] < [0, x*] + (¢1+¢5). (3)

If C(g, d) is a horocycle with summit £ a simple calculation shows that
1+cosh[0,8] = (1+d)?/2d.
Then el0 €l = g+1,
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We have shown above that there is a constant B so that d,, < B. Hence
1[0, %] —In (dyz)| < 2[In BJ.

From Beardon & Nicholls (1972) we have that, for any y econ (4)
1[0, 7(0)] —In (u(¥))| < In2.

From (3) and these last two inequalities

[}ILnign Inp(gh) +1Ind,,)| < cs.
€lp

Exponentiating Gt < (’tn(i;n n(gh)) dy, < cq.

As the minimum of x#(gh) (he G,) occurs when ghe G||G,, thisis just the statement of the lemma.

To prove lemma 8 let L be the axis of H; that is, the axis of 3, 9’. Let x be the summit of L; that
is the mid-point of Lin the Euclidean sense. Again the summit of L is the point of L hyperbolically
closest to 0.

If r = |g—7'| then }r < 1—|x| < §r. Let &’ be the summit of g(L). gHg™! translates L along
itself with a fixed translation length. So thereis 4 € gHg=1so that [4g(x), x"] < ¢;. Now an analogous
argument to the one above completes the proof.

5. PrRoorFs

We shall use the methods of ‘transformation’ geometry to prove these lemmas. The proof will
consist in general of two parts. The first is the construction of a numerical invariant from the
given data which will express the problem. This will involve reference to a ‘canonical’ situation
(the ‘transformation’). The second step is the deduction of the required inequalities from the
invariant.

Before starting we note a few formulae. If y econ (4) then

Y(C(p,d)) = Cv(p), |7'(p)] d), (1)
ifz,wed, [7(2) =v(@)| = | (@) [} ¥ ()|} |z—w, (2)
and if ze 4, 1-[y(@)]F = [y (1= [2]). (3)

These are easily checked and we shall use them repeatedly. We note also the trivial inequality,

ifzeA, 1—|z] < 1—|2J? < 2(1—|2)). (4)

Proof of lemma 4.1. For a horocycle C = C(p,d) let p(C) = p,d(C) = d. They are uniquely
determined by C.

Then we form, for xe 4 |x—[)(C)|2
2 ’ A(C,x) = 7 -
(G0 = Zeya =)

By (1), (2), (3),if yecon(4),  A(y(C), v(x)) = 4(C, ).

In this case x € C(p, d) means, by the definition of a horocycle, given at the beginning of § 4, that

X — 2
ll—lfcllz <d(C)

37 Vol. 282. A.
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So xeCifand only if A(C,x) < 1. In this case there is no need to find a ‘canonical’ situation.
We can now prove lemma 4.1.

If xe C then |x—p(C)|2 <1

: , d(C) (1=« =~
With the use of (4) this shows

, _ lx—p(C)] < J[24(C) (1—|x])],
which proves (i).

Ifx¢C lx—p(C)|?

AN (I—1 ™

so that, by (4), lx=p(C)| > J{(1=x]) d(C)},

which proves (ii).

Proof of lemma 4.2. We need another description of C(#,7’; o). We have already noted that
C(0, c0; &) is a cone of apex angle © — 2 symmetric about the imaginary axis (we are now working
on H). Let K be a circle, centred on a point of the imaginary axis, touching 9C(0, 00; ). K is also
a hyperbolic circle. Then it is clear that if ze C(0,00; o) there is r€]0,00[ so that 7ze K and
conversely. As z+>rz preserves hyperbolic distances it follows that C(0,00; @) consists of all
points of H which are less than some hyperbolic distance d(e) from the imaginary axis. Now we
can return to 4.

C(n,7'; @) is the set of points less than some hyperbolic distance d(a) from the axis of 7, 7’
Then yecon (4) so that y(y) =1, y(y’) = —1. As a and hyperbolic distances are invariant
under con (4) it follows that d(«) depends on o only.

We consider the special case # = 1, 9" = — 1. The a-lines are

|z+itana| = seca.

From this one finds coshd(a) = coseca.
Now form Ay’ w =|77 7] ( : ,n'eS, wed).
(7’5 w) [w—y] [w—7] (7 )

By (2), (3),ifyecon(4),  A(y(m), y(n'); v(w)) = 4(n,7'; w).
If we choose y so that y(5) = 1, y(y") = — 1, y(w) is imaginary, then y is unique. If y(w) = if

’ 1 __gg
A(n,n'; w) = 2‘1—_;52.
Ifi£ lies on a f-line through 1, — 1 then
_1—sinfg
t6= cosf
1—-£
So rgg = sm/)’.

Hence w lies in C(7, 5’; «) if and only if
Ay, n'; w) > 2sinc.

Now we can deduce the lemma directly. We may suppose that |x —#| < |x—7’| without loss of
generality. As 9,9’ €S
lx=n'| = [x—n| > (1—|#]). ()

By the triangle inequality |7 —7| < |[x—9|+|x—79'| < 2|x—7'|. (6)
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Suppose now that xe C(n,%’; «). Then
[n—7'| (1= |%]?) > 2sina|x—7]|x—7'|.

By (6) (1=]#]%) > sine|x—] (7
and so, by (4), 2coseca(l—|x]) > [x—7p|. (8)
From (7) and (5) [7—7'| (1—|x|%) > 2sina(1—|x|)2

So, from (4) (1—|x]) < cosecalp—7'|.

This and (8) constitute (i).
Now suppose x¢C(n,7'; a). Then

[7—7'| (1—]%|?) < 2sina|x—7y||x—7|.

The inequality |x—7'| < |x—n|+|7—7'|

gives =7 (1—=[%]*) < 2sina|x—p|(|x—n|+|7-7']).
If lx—n| < |n—7'|

we obtain 1—|x|2 < 4sina |x—7].

Thus, by using (&), |v—7] > min (Jy =], }(1— |s]jsina),

which proves (ii). 7
It should be observed that the greatest labour expended in this proof was in deriving the
analytic expression defining C(7,9’; ).
Proof of lemma 4.3. Let C, C" be two horocycles. Define
ny _ 1£(C) —p(C)|?
4G ="geyaey
Again, if yecon (4), A(yC,yC') = A(C,C") by (1) and (2). We can assume p(C) # p(C’) as our
results will be trivial otherwise. Then it is easy to see that there is 7y so that

v(p(C)) =1, y(p(C)) =—1 and ¥(C)={z] [z—}| <}
Then, without any trouble one finds that C, C’ intersect if and only if
A4(C,C") < 4.
If C = C(py,d,) and C’ = C(p,, d,) meet
|1 —po]* < 4d,d,

or o1~ < 24/(dydy)
which proves (i).

If C, C’ do not intersect |pr—ps|? > 4d;dy
which proves (ii).

It is convenient to prove lemmas 4.4 and 4.6 together.

Proof of lemmas 4.4 and 4.6. First let us reduce lemma 4.4 somewhat. We have shown, in the
proof of lemma 4.2, that C(y,5’; «) consists of all points hyperbolically closer than d(«) to the
axis of 9, %". Let L (resp. M) be the axis of 9,9’ (resp. ¢, §"). If C(§, &'; ) and C(», 9'; «) intersect
there is w € 4 closer than d(e) to both L, M. Thus the (hyperbolic) distance between L and M is

37-2
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less than 2d(«). We shall show that the converse is true. Let / be the distance between L and M
where we assume [ < 2d(a). There is a geodesic K from a point of L to a point of M of length £,
where [ < £ < 2d(e). Let u be (hyperbolic) mid-point of K. Then the distance of « to L(resp. M)
s < 3k < d(a). Thus # lies in both C(y,7’; ) and C({,{’; «). Thus C(y,7’; ) and C(§,§'; )
intersect.

The configuration of both lemmas 4.4 and 4.6 can be described by the two pairs of points
(7,9, (&, ¢'). Such pairs of pairs are classified, up to the action of con (4), by the familiar

(=) (&'—7")
This, as is well known, is a real number (if §,{’, 7,9’ €S). L and M intersect in 4 if and only if
A(§, &5 m,m") < 0. Furthermore, if L and M intersect at an angle ¢

AL, &5 1,m') = —cot? (39).

If4 > 0A4(8¢'; »,m") depends only on the ordering of §, §" and of 3, #” and on the hyperbolic
distance between L and M.
The invariant 4 is not very suitable for our purposes. We define

cross-ratio

A, &5 1,7

B ) = = "7|||§ glllﬁ? lelf -7

If L and M intersect at an angle ¢ then we find that

B(& &5 n,") = isin? ¢

We split the proof of lemma 4.4 into two cases depending on whether L and M intersect.
Assume, as we can, that

Ig_"?] = min(lg—”l’ |§/'_77}3 Ig_”’]: ]gl"”’])
=7 <[§=¢.

Now we can prove lemma 4.4 in the case that L and M intersect. With this normalization, from
the triangle inequality we obtain the following inequalities.

As =&+ 1E-9l > -,

hence In=¢1>38-¢. (9)

Likewise ' =& > % |n—n). (10)
Also & ="+ 9" =9 +]|n-¢ > [£-¢,

so 218 =7’ +n—7'| > |£=¢|. (11)

In the case of lemma 4.4 only case (i) arises and
B(& & mn') = asin®¢ < ¢
So [E=n1& =l 1E=0'[1&'=7'] < 2|E=C|* [n—7']
From (9) and (10) we obtain  [{—7||§'—7'| < [=&'| |y —7'].
Now we split cases. If |y — 9’| < $|{—{¢'| then (11) gives

2[8' -7 > §[E-¢
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and we obtain [E—n| < 4|p—7'].
If ln—=u'| = 3-8,
then, as [E—n] < |8 =7
one has |E—n] < y2|n—7'].
In either case [E—n| < 4|n—7'|.

This is the assertion of the lemma.
In the case of lemma 4.6 we make the same normalization. The same argument as above shows

[{—7| < max (4sin2¢, A/ 2|sin@|) |n—7’|. (12)
On the other hand from

[E=nl |E=7'| 1 =9 & ~7'| = isin®p[{—-C'|? |77 7'[?
we obtain, by the triangle inequality
(€=l (1E=al+n—n']) (=l +[E=E]) (E=n| +]E=&| +|n—n"]) > isin® @ [E= L' | —'|
If |{—9| < 0|n —7'| we have, on recalling that [y —%'| < |{—{¢’| the upper bound
0(0+1)%(0+2) [E=E [ |n—7'|?
for the left hand side. As 6(6+ 1)2 (6 + 2) is increasing we can find 6, > 0 so that, if 6 < 6,
0(0+1)2(0+2) < }sin?¢.

For example, we could take 6, = g5 sin%¢.
Hence, if | —#| < 6, |7 —7'|, we would have a contradiction. Thus

[§=1] > Og =7 (13)
(12) and (13) are the assertions of lemma 4.6.
Now consider the case 4 > 0. Again we form the invariant B. We can find y econ (4) so that,

for some 0€]0,7[ fym,yn’y = {+1, — 1}, Y& y&'} = {9, — 16},

It follows easily that B depends only on the hyperbolic distance between L and M. Ifthis distance
is D then we find after an easy calculation that

cosh?D = 4B({, s n,9') + 1.
We can now prove lemma 4.4 completely. Assume (i), which in view of our earlier discussion,

means D < 2d(a). Thus B(&, ¢ m,m") < *(cosh?2d(a) —1)

and the conclusion follows exactly the deduction of the conclusion in the case when L and M
intersect.
Assume C(&,§; o) and C(#,7’; ) do not meet. Then D > 2d(«) and hence

B(& &5 1,7m') > i(cosh? 2d(a) — 1)

and we can deduce the conclusion just as we deduced (13) above. We leave the details as they
present no problems.
This leaves only lemma 4.5.
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Proof of lemma 4.5. This follows the well-worn pattern. We are given as data 9, %’ and a horocycle
C. Cand C(5,7’; o) intersect if and only if the distance between the axis L of 5,9’ and C'is less

than d(«). Let ln=p(C)| |7’ 1’ )|
€)= [n—n'1d(C)

A(n,n's
By (1) and (2) this satisfies, for y econ (4),
A(y(m),y(n); ¥(C)) = A(n,n’; C).
We can find a ‘canonical’ form by choosing y so that

yn) =1, y(n')=-1, y(p(C)) =

As vy is determined by its action on three points it is uniquely determined. A straightforward
calculation shows that C and C(#,%’; &) meet if and only if

A(n,n'; C) < cot (}a).
Welet C = C(p,d). Without loss of generality we may suppose that [p—#| < [p—7’|. So by the
t 1 lit
riangle nequality ln=n'| < lp=nl+1p—n"| <2[p—n'l. (14)

Now assume that C(p,d) and C(7,79’; o) meet
[p=nllp—n'| < cot(3a)d|y—7|.

So, clearly, as [p—9| < |p—7'],
|p—n]? < cot (Ja) d|n—7’|. (15)

But using (14) instead gives |p—n| < 2cot (3a)d, (16)
(15) and (16) constitute the conclusion of lemma 4.5. (i).

Suppose now that C(p,d) and C(5,7%’; &) do not meet. Then

[p=nllp—'| > cot (3o) d ]y =]
Hence, as lp—n'| = ln—=n"|+|p—nls
lp—al (Ip—nl+In—7']) > cot (3a) d|n—7’].
Suppose that |5 —p| < |7 —7’'|. Then this gives
2|p—n| = cot (3a)d. (17)

On the other hand, if |p —p| > |9 — 7’| it gives

2|p—n]* > cot (3o) d |y —7'|. (18)
Hence either (17) or (18) is true. This is the assertion of lemma 4.5 (ii).

6. APPLICATIONS TO THE FIXED POINTS

We can now apply the results of § 5 in a preliminary fashion. The methods of this section are
the background for those of the next. The investigation here is a development of the work of
Rankin (1957).

Four essentially different cases arise and to avoid a monster theorem we have to split our
resultsinto four theorems. This multiplicity, although displeasing, seems at the present time to be
unavoidable. For this section we fix a Fuchsian group G.
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THEOREM 1. Let p, q be parabolic vertices of G. There is a constant ¢ > 0 so that, if g(p) # q,

lg(p) —q| > ¢/ (1(8))- ~ (1)
Moreover, if for some k > 0 0 < lea(p) —ql < KV(u(en) (2)

Jor a sequence (g,,) in G then the g, belong to at most a finite number of right cosets of G,.

Proof. By proposition 2.1 we can find an admissible set {C,} of horocycles which are disjoint.
As g(C,) and C, are disjoint lemma 4.3 (ii) gives

Ig([)) "‘9| > 61\/{d Cg(p) d(Cq)}'
By lemma 4.7 (i) d(Cyp) > capa(g)~ (3)

“g!
These two inequalities give the first assertion.
We prove the second. We claim that we can find dso that C(g, ) meets all g,(C,). For if g,(C,)
and C(g,d) are disjoint by lemma 4.3 (ii)

|8a() — 4| = c1\{d(Ch) 45
By lemma 4.7 (i) d(Coi) = Cat(gn) ™
Thus lga(p) —q| = erck d%/ﬂ(gn

If d > k2/(c3c,) this contradicts (2). Hence if this is so g,(C,) and C(g,d) meet. So g,(C,) and
0C(q,d) meet. However there is a compact subset K of 8C(g, d) so that

G,K = 3C(g,d).

Thus for g, thereis 4, € G, so that £, g,(C,) meets K. By lemma 4.7 (ii) only a finite subset of an
admissible set of horocycles has diameter greater than a given quantity. Thus there is a finite
subset B of G so that, given n, there is b, € B so that

hngn(cp) = bn(Cp)

So, given n there is £, € G, gn = by, k,.

As g,(p) = hy1b,(p) we have from (1)

6n() ~ 4] > el {ulkz )},
On combining this with (2), we find
w(hytb, k) < cap(hyth,,).
Thus, by using #(v17s) < #(v1) #1(72) (V1, Y2 €con (4))
p(b b b) 1 k) < (b2 (b B,) ). (4)

As the b, run through a finite set, without loss of generality we can take b, constant and equal to
b say. b7th, b € Gy—yy. If 571(g) = p then g,(p) = ¢. So b~1(q) # p. We need the lemma

Lemma 1. If Hy, H, are parabolic subgroups of con (A) with distinct fixed poinis p,, p, there is a constant
cusothat f & Hh o plhus) > eyl ().
This applied to the case H, = b~1G,b, H, = G,, gives a constant ¢; depending on b, p, ¢ so that

H((b= b)) > 5 (b0, 6) 1) (k).
With (4) this implies that n(k,) < ¢
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So the set of possible £, is finite. Thus
{8n = ha'byukn'}
runs through at most a finite number of right cosets of G,.
It only remains to prove the lemma.

Proof of lemma. There is y € con (4) so that

7(1’1) =1, 7(1’2) = -1
As, for gecon (4), w(y) 2 p(ygy™) < plg) < p(y)2u(vgy™),

we need only prove the lemma for p; = 1, p, = — 1. If g, (resp. g,) is a parabolic element fixing
1 (resp. — 1) it has the form

(141t -1t resD. g. — 1+iu  iu
S TR e P& = iy 1—i))

Easy calculations show that x(g,) = 412+ 2, u(g,) = 4u®+2 and
1(8182) = 2(1+2(u— 1)+ 8028).
So 11(8182) > 2(1 +8u?).

As (14 8u%?) > 971(1 + 2u?) (1+24%)
the lemma follows at once.
Theorem 1 is typical of those to follow.

Turorem 2 (Rankin 1957). Let p be a parabolic vertex and 3, 3" a pair of conjugate hyperbolic fixed
points. There is a constant ¢ > 0 so that, for geG
lg(6) =] > ¢fp(g)- (5)

Moreover, if for some k > 0 |2, () —n| < klpn(g,) (6)
Jor a sequence (g,,) in G then the g, belong to only a finite number of right cosets of G, .

Proof. Given G, I claim that thereis o (0 < a < §n) and an admissible set of horocycles {C,} so
that no G, meets C(9,7’; &). For G, acts on C(9,7’; «) and has a relatively compact funda-
mental domain K there. If G, meets YK (yeG,,) then C,—1, meets K. So we have only to ensure
that no C, meets K. As K is relatively compact this can be done in view of lemma 4.7 (ii).

Hence g(C,) does not meet C(7,7’; a). By lemma 4.5 (ii)

lg(p) =n| > eymin (d(Cy), d(Cy)® [ —7'[3).

As {d(C,)} is bounded above one has

lg(p) =71] > e2d(Cye)-
By lemma 4.7(ii), d(C,,)) > ¢s/p(g), where ¢; depends on p but not on g. Hence

_ lg(2) =l > caln(g),
which proves the first part.

Suppose now we are given a sequence (g,). We claim that there is d so that g,(C(p,d)) and
C(n,n"; =) meet. For, if they do not, by lemma 4.5 (ii)

|8(#) =1l = ¢ min (d(Cyi)s (d(Coim) [1—1"])3)-
By lemma 4.7 (i) this exceeds
e min (14(g,) ™" &, p(g) "2 b [n—7'|3).
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If we choose d > max (cz %, ¢g 2|9 — 7’| ' £2) this shows that

|ga(0) =] > Kl 1e(ga),
which contradicts (6). Thus for such d, g,(C(p,d)) and C(y,5’; ) meet. Hence, as we have seen
at the beginning at the proof of this theorem, there is a compact set K so that, for some 4, €G,,,
21,(C(p,d)) and K intersect. Also, as we have seen above only a finite number of horocycles
g(C(p,d)) (g€ G) have diameter greater than a given quantity ¢,. Hence there is a finite subset B of

G so that, for each n there is b, € B so that
Thus, for each n there is £, € G, &, €G,, and b, € B so that

Thus we can finish the proof of the theorem along analogous lines to theorem 1 if we have the
lemma:

Lemma 2. If H, is a hyperbolic subgroup of con (A) and H, is a parabolic subgroup of con (A4) whose
Jixed point is not one of the fixed points of H,. Then there is a constant cg > 0 so that, for hy € H,, hy e H,

by hy) > ey pe(hy) plhy),  p(hoha) > o p(hy) 1e(ha)-

As before it is easy to reduce this to a special case; say when the fixed points of /, are + 1 and
that of H, is i. The lemma is proved then by direct calculation in the same way as lemma 1. As
there is nothing to be gained from the proof we omit it.

The proof of theorem 2 proceeds unhindered along the pattern set in the proof of theorem 1
provided we recall that no point is both a hyperbolic and a parabolic fixed point.

We shall state another theorem, without proof, which can be proved by analogous methods.

THEOREM 3. Let 0,7’ be a pair of conjugate hyperbolic fixed points and p a parabolic Sfixed point of G.
Then there is a constant ¢, > 0 so that

lgn) ] > oy (1))
Moreover, if for some k > 0 |2a(1) — 2] < K1y ((g2)

Jor a sequence (g,,) in G then the g,, belong to at most a finite number of right cosets of G,,.
Finally we state

TuroreM 4. Let 3,9’ and &, &’ be two pairs of hyperbolic fixed points of G. Then there is a constant

¢10 > 050 that if g(n) # & le(n) =&| > crolpelg).

Moreover, if for some k > O there is a sequence (g,) in G so that

lgn(n) = &| < Klu(g,)

then the g, belong to at most a finite number of right cosets of G,,.
The proof of this is somewhat different to the previous ones and so we indicate the modifica-
tions necessary.

Proof. Let L (resp. M) be the axis of 9,9’ (resp. §, {’). Let us look at the set
T = {geG|gL meets M in A}

Gy acts on M and there is a compact interval I < M so that Gy I = M. So if ge T there is
¥ € Gyp so that yg(L) meets M in L.

38 Vol. 282. A.
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Iis compact in 4 and so, as yg(L) is the axis of yg(9), vg(y’) there is ¢y, so that
lve(n) —ve(n')| = e

From lemma 4.8 (ii) it follows there is £€G,,, so that u(ygh) < ¢;, for some ¢;,. Hence there is a
finite set V) in G so that T < G V,G

UL
From the definition of 7'it is made up of a number of double cosets in Gy \G/G,,.. Hence there is
a finite set Vin G so that T =Gy VG,

Let ve V. Then let ¢(v) be the angle at which vL and M intersect. As all our maps are con-
formal this is also the angle at which yvi(L) and M intersect if

v€Gy, heG,,.

Let us consider g for which g(L) and M do not meet. As a point cannot be a fixed point of two
distinct hyperbolic subgroups, g(L) and M cannot be asymptotic. Hence the (hyperbolic)
distance between them is positive. Let

U(D) = {geGl[s(L), M] < Dj.

We shall show that U(D) consists of a finite number of double cosets of G, \G/G, . Clearly itis a
union of such cosets.

There is a compact interval I < M so that Gy, I = M. Suppose the closest distance between
gL and M is achieved by y on g(L) and z on M. y, z are then known to be unique. There is y € G,
so that y(z) el.

Thus some point of yg(L) is within D of a compact set; that is, some point of yg(L) is in a com-
pact set K (which depends on D). By lemma 4.8 (ii) we now deduce that there is € G,, so that

#(vgh) < e13(D).
Hence there is a finite set W (D) so that

U(D) = G, W(D) G

'

In particular the distance between gL and M, if non-zero, is bounded below. Hence there is « so
that, if gL and M do not intersect, gC(n,9’; «) and C({, {’; «) do not meet.

Let U = U U(D). Then G is the disjoint union of 7"and U. If we split cases as gisin T or U
D>0

and use either lemma 4.6 (ii) or 4.4 (ii) (and 4.8) we can complete the argument exactly along
the lines of theorem 1. We need the lemma

LemMA 3. Let Hy, H, be two hyperbolic subgroups of con (A) without a common fixed point. Then there is
¢1a > 050 that, if hye Hy, hoe Hy
whyhs) = cqpi(hy) po(ho).
Proof. As in the proof of lemma 1 we may normalize by conjugating H,; and H,. So we may
suppose that H, fixes 1, —1 and H, is arbitrary.
An arbitrary element 4, of H, has the form

_ (cosht sinh t)
L=

sinh¢ cosht
for some te R.
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To express an arbitrary element of /, we require two parameters, u€ R, ve Cwith 1 + 42 = |p|?
which depend only on H,. Then an arbitrary element of H, is given by

A cosh s +iusinhs ysinh s
2 vsinh s cosh s —iusinh s

for some se€ R. The fixed points are (1 +ix)[? and — (1 —iu)/[P.
The fixed points of H, are not + 1 if

1+iutv # 0. (7)
An easy calculation shows
phihy) = H|(1+iu+7) estt+ (1 —iu+7) e~ + (1 +iu—7) est + (1 —iu—7) et5|2
+|(1—iu+v)est+ (—1+iu—v) e+ (—1 +iu+v) et + (1 +iu—v) et-5[2},
From this and (7) it is clear that for |s| > so|t] > ¢,

e~ HD 1By hy) > 645

On the other hand, w(hy) < c1€®8,  u(hy) < cqp et

The last three inequalities imply the assertion of the lemma if u(#,), p(hs) = ¢yg.
If either u(h,) (or pu(hy)) is less than ¢, we have

wlhyhs) = p(ht) = p(hy)
> et p(h).

Thus if #(ky) < 613 we have w(hyhs) 2 cig? p(hs) phy).
This proves the lemma in all cases.

The results of this chapter give a complete description of how the fixed points of a Fuchsian
group approximate one another. They will also, in the sequel, give examples (especially of ‘worst
possible’ type of behaviour).

7. UNIFORM APPROXIMATION

We are now in a position to state and prove the major theorems in this area. The theorems
about to be presented generalize Dirichlet’s theorem in the theory of diophantine approximation.
These theorems are our major technical tool in the study of groups of the first kind.

TuEOREM 1. Let G be a Fuchsian group containing parabolic elements and let Py = {p, ..., ps} be a com-
plete set of parabolic vertices inequivalent under G. There is a constant ¢ > 0 with the following property: if
x€Lg, X > 2, thereis pe Py and g€ G with u(g) < X so that

lg(8) = x| < ¢[y(u(g) X). (1)
Moreover, there is a constant ¢’ > 0 so that if g,€ Py (i = 1, 2) then, if g,(q1) # g2(¢a),
|81(91) = a(g2) | > ¢'[V (1(g1) #4(82))- (2)

THEOREM 2. Let G be a Fuchsian group without parabolic elements. Let 7,7 be a conjugate pair of
hyperbolic fixed points. Then there is ¢ > O with the following property: if xe Ly, X > 2 there is { e{n,1'}
geGwith pn(g) < X so that

|g(§) — x| < c/X. (3)
Moreover, there is ¢’ > 0 so that, if g;€ G with u(g;) < X, §e{n,n'} (j = 1,2) then, if g,(&) # 2()s
181(81) — 82(&a)| > ¢/ X. (4)

38-2
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Theorem 2 is false if G has parabolic elements.

These two theorems should be compared to Hedlund’s lemma (theorem 3.1). The important
difference is that the sizes of the elements of G concerned are completely under control. It is also
possible to regard these as giving analogues to the Farey series; for instance, they show the con-
nection between the classical ‘circle method’ and the variant used by Lehner (1964).

Another interpretation is that they describe economic covers of Lg; covers, in fact, of bounded
‘depth’ and whose sizes are well under control. The usefulness of these two theorems will be
demonstrated in the next three sections. The remainder of this section is devoted to the proofs.

Proofs of the theorems. The ‘Moreover, ...’ clauses are relatively trivial and we deal with them
first. The proofs are variants of the proofs of theorems 6.1 and 6.4.

In the case of theorem 1 we can find, by proposition 2.1, and admissible set of horocycles {C,}
so that, if p # ¢, C, does not meet G;. As g,(C,, ) and g,(C,, ) do not meet lemma 4.3 (ii) gives

|62(20) ~ 8a(£)] > e1(d(Cpp) d(Cyip)).
By lemma 4.7 (i), for j = 1,2, d(C,() > 62d(C,)ulgy)-

gJ
As the p; belong to a finite set {d (ij)} is bounded below. On combining these remarks one
obtains (2).

The case of theorem 2 is analogous. We split cases. If the axes of g,(%), g,(%") and of g,(7),
g-(n") meet they do so, by the analysis in the proof of theorem 6.4 at one of a finite number of
angles. In this case the conclusion follows at once from lemmas 4.6 and 4.8. Otherwise, as in the
proof of theorem 6.4 there is & > 0 so that if the axes of g,(7), g,(7") and of g,(7), g,(»") do not

meet then g,(C(y,9"; @) and g,(C(n,7’; &)) do not meet. Then the conclusion follows from
lemmas 4.4 and 4.8.

We now turn to the proof of the main part of theorem 1. Recall that in § 2 we constructed
regions A;(a). If G is non-elementary the set

Kg(o) = A~ UA()

isnon-empty ifa < 1w, because there is no way of covering 4 by more than two disjoint n-lenses.
Ifnecessary by considering a group conjugate to G we may suppose that 0e Kg(a). It is easy to
check that our results are invariant under conjugation. Construct the radius (i.e. geodesic) from
0 to the given limit point x. Suppose a point of this radius lay in 4;(§n); as 0¢ 4;(3n) it would
follow that x € 2. This is impossible and hence this radius lies entirely in K(}n). In particular the
point x; = (1 - X1 xeKy(in). .
Let {C,} be an admissible set of horocycles. Fix p. Then thereis C), = C,, ahorocycle at p, so that

i 2 (D Ky(3n) ~ UC, (5)

since the right hand side is relatively compact (see §2). If ¢ is a parabolic vertex we let

C,=8(G) if g=2g(p)
=G if q¢{g(p)| 4G}
From (5) one finds that UC; 2 Kg(3n).

4

In particular x, € UCj. So for some g, x,€Cj,. Thus there is p;€ P, and g€ G so that x, € g(Cy).
Q
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The diameter of g(C,,) is at least X~ (by the construction of #,) and hence
d(8(Cyy) > 1/(2X).

By lemma 4.7 (ii) we can find g, so that g(C},) = £,(C,) and p(go) < ¢, X. Take g = g,.
Byl 4.1 (i
ylemma &1 [5,-8(8)] < eV (Xn(6))-
As |x; — x| = X~1it then follows that
%= 8(85)] < (ea+ea) [N (Xpe(8))-

The statement of the theorem follows on absorbing constants.

The proof of theorem 2 is analogous. Construct x, as above. Then x, € Ky(3n).
D n Ky(3m) is relatively compact. Thus, for small enough £ > 0,

Cn,n's B) 2 D n Kg(3m).
x1€8(Dn Kg(3m)) < gCn,n'; B).
By lemma 4.2 (i), lg(n) —g(")| > cqf X.

Hence there is g€ G so that

Hence, by lemma 4.8 (ii) we can find g, so g,C(9,7’; ) = gC(n,%'; ) and p(g,) < ¢z X. We
can take g = g,.
As x,€C(gn, gn’; B) it follows by lemma 4.2 (i) that

min (|g7 — %], g0’ — %) < ¢/X.
As |x—x,| = 1/X this implies that
min (|g7 — x|, g7 —x[) < (¢ +1)/X.

The assertion of the theorem follows on absorbing constants.

8. SOME ESTIMATES FOR GROUPS OF THE FIRST KIND

In this section only groups of the first kind will be considered.

Our object is to convert the results of § 7 into quantitative estimates on the distribution of group
elements. This is a necessary technical preparation for the next two sections.

We need the following two propositions.

ProrosiTiON 1. Suppose G has parabolic elements and let Py = {p,, ..., p;} be a complete set of parabolic
vertices inequivalent under G. There are constants, c,¢’,c", depending only on G and Py with the following
property if p, g Py, g€ G| G, there is he G||G,, so that

|2(p) —&(@)| < ¢/ulg)
and c'n(g) < plh) < "p(g).

ProrosiTION 2. Suppose G has no parabolic elements and let n,7" be a conjugate pair of hyperbolic fixed
points. There are constants ¢, ¢, c”, depending only on G and {n,y'} with the property if

g€G|G,, thereis heG|G,,

so that le(n') —h(n)| < ¢/pu(g)
and ¢'n(g) < p(h) < c"u(g).
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Proofs. Proposition 2 is merely a form of lemma 4.8 convenient for our present purposes; it is
true if we take 4 = g.

Now we concentrate on proposition 1. For this we need a preliminary discussion. Let
C; = C(py,dy), Cy = C(py, d,) be horocycles as in §4. As in § 5 we form the invariant

A(C, G,) = |1’1 ~'1"212/011 ds.
We observed that Cy, C, intersected if and only if 4(C;, C;) < 4. Thisis easily refined; if 0C;, 9C,
meet at an angle ¢ then A(C,, C) = 4cos* b

In particular, if 0C;, 0C, meet at right angles

A(C, Gy) = 2.
— 2
Let {€$ and form B(C,,Cy,8) = }g §1I2g§.
— b2ty

If yecon (4) B(yCy, yCy,vE) = B(Cy, Gy, §). Thus for any b, {{: B(Cy, C,, &) < b} defines in-
variantly an interval around ;.

Let @ be the set of { in § so that the }=n-line joining p, and & does not meet (0C;) n C,. This is
also an invariantly defined interval around p,. As in § 5 we can restrict our deliberations to the
case p, = 1,p, = —1,d; = d,. On examining this we find that

Q = {§|B(Cla Czs g) < A(Cb C2)} (1)

Now we can return to the proof of proposition 1. Let C,,, C, be horocycles at p, ¢ respectively so
that 0C,, 0C, meet at right angles. Suppose 7 generates G, and that 7 translates a point of
£(0G,) a hyperbolic distance D along itself, D being independent of g.

We can find £ € Z so that the two intersections of g(0C,) and 7%g(3C,)) are on the same side of the
summit of g(0C,) and so that one of the points of intersection is within D of the summit.

Let us derive some consequences of these constructions. Firstly, as g(0C,) and 7%g(0C,) still

meet at right angles
A(gCypmrgC,) = 2. (2)

Let 8(G) = C(g(9), 4,
mig(Cy) = C(m*g(p), dy).
By lemma 4.7 (ii) there is ¢;, depending only on C,, C, and G so that
dy,dy < 65, (3)
By lemma 4.7, as g€ G||G,, there are ¢;,¢3 > 0 so that
catt(8)™ < dy < c3pu(g) 7N (4)
Now, if w is a point of 9g(C,) within a distance D of the summit

(1= [1—d| |w|/(1+4,))*
(1= w]®) (1= ((1 - d1)/(1+4,))®)

< §(1+cosh D)

2-1
1 1 - 2 s  mi -1y,
from which one obtains 1—|wl?> T oosh D ™D (dy, d7Y)
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As there is such a point on 07%g(C,) we obtain that

81
—  mi -1
%> ooshp™in (4 i)
By (3) we see that there is ¢, > 0 so that
dy > ¢4d;. (5)

On the other hand, as both intersections 0(gC,) and d(7*¢C,) are on the same side of the sum-
mit the }n-line through 0 does not pass through 9g(C,) n 7*%g(C,). So by (1) and (2),

L L9l & < ate(melcy)

= 2.
As |g(q)| = 1 and |m*g(p) +g(q)| < 2 we find

dy < 2d,. (6)
Define & by he G|G,, and kG, = m*gG,. By lemma 4.7 there are constants ¢z, ¢ > 0 so that
s (B) < dy < (k) ()
So, by (4), (5), (6), (7) 652706 p(g) < mlh) < coegter w(g)- (8)
On the other hand, 2C, = 7*¢g(C,) and so as A(kC,, gC,) = 2,
|h(p) —8(9)|* = 2d, d;.
< 442
< 4egp(g)~ (9)

Equations (8) and (9) constitute the assertion of proposition 1 which is thereby proved.
It is now necessary to introduce some notation. For a€.§ we set

B(a,r) = {ylyeS, |la—y| <r}.

Let I(a,r) (x) be the characteristic function of B(a,r) on . Let us call a set of the form B(a,7) or
B(a,r) an interval. If J is an interval let |J| be the angular measure of J. Aslong as 7 < 2

| B(a,r)| = 4arcsin (7).
As 2¢[m < sing < ¢(0 < ¢ < n) we find, if7r < 2,
2r < | B(a,r)| < 7. (10)
Now we can state the major results of this section. »

THEOREM 1. Assume G has parabolic elements. Let p be a parabolic vertex. There are constants
ky ¢y, €qy €35 ¢4 > O depending only on G and p so that k €10, 1[ and, if J ts an interval then

(i) Z1<alJ]|X+e, (11)
geB
where B = {ge G |g(p) € J, kX < p(g) < X},
(i) 3126l X-0)X, (12)
ge

where C = (g€ G|G, |2(p) €J, kX < u(g) < X},
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TuEOREM 2. Assume G has no parabolic elements. Let 4 be a hyperbolic fixed point. There are constants
k, ¢1, €9y C5, €4 depending only on G and 9 so that k€10, 1] and, if J is an interval then

(i) }_‘,1 ¢ |J| X +¢y, (13)

where B = {ge G |g(n) J, KX < (g) < X},
(i) X 1ze|J[X—c (14)

geC
where C = {geG|G,|g(n) e J, kX < u(g) < X}.

These two theorems contain almost everything of their kind which has been obtained by
purely geometrical means. In some respects they can be improved by a more advanced analytic
theory but a discussion of what can be obtained is out of place here.

That we have used a fixed £ is merely a matter of convenience; the value of % is not relevant.

Theorem 1 is the hardest of these two theorems and we will only give the proof for it. The other
requires no new ideas.

Proof of theorem 1. Let Fy be a complete set of inequivalent parabolic vertices containing p. By
theorem 7.1 there are constants c¢;, ¢z so that, on S,

1< X % 05/«/ < G (15)

g€ Py geG||Gy
Suppose J = B(a,r) and let J. = B(a,r+ 2, X°%),

where we set J_ = & if r < 2¢; X%, The distinction between open and closed intervals will not
concern us here. Let

B, ={geG|G,|g(g) € J, ple) < X}
Then, with a little thought, (15) yields

S % Ielo), V@9 X) <o (o)
uemoet —0 (onS~J,)
>1 (onJ).

When we integrate over S and use (10) we see that for some constants ¢,, g, ¢y > 0

S % (e X)-

4Py ge B

2 > ¢, |J| — ¢y X3, (164)
< ¢g|J| + g X2 (160)

(16 ) is not precise enough and we must obtain a better variant. Let £ be so that 0 < £ < 1. Let

J, = B(a r+J7CX")

and By ={geG|G,|g(g) e J, kX < p(g) < X}.
From (15) one obtains
B2 1(g(p), ¢s/y(n(g) X)) < ¢ (on )
o —0 (onS~Jy).
If we integrate this over S and use (10) we obtain
2 Z (u(g) X)% < ey || o X1 (17)
qe P, geByg

The constants depend on G, F, and ¢;; depends also on £.
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To proceed we need the following lemma which we shall prove at the end of the section.

LeMMA. Let q be a parabolic vertex. There is a constant v, depending only on q with the following property :
if g€ G|G,, Y > u(g) the set {y € Gj|u(gy) < Y} has at most v, (Y[u(g))* elements.

Now let ¢; = max (v,). Let n(g, ¢; Y) be the number of elements of

g€ P,
{reGylu(ey) < T}
Then by the lemma and (17) we obtain

1
> X y”(g: 75 X) < 19619 |J| + 120 XL

qge Pyge By
Thus if we let B} ={geG|glg)eJ, kX < u(g) < X}
we have S X 1< oo J| X +egpen
qePyge B}

The summands are all positive and so, for ge F,

3 1< 69000 || X 613045
ge B}

In particular this holds for p; this gives (11) and proves part (i) of theorem 1.

1 ,
Now let By(t) = {g€ GG, |g(q) €J, n(g) < tX}.
By (16b) Y5 w7t <ol XE 4. (18)

ae Py ge B(t)
Now set ¢ = (¢;/2¢5)? and subtract (18) from (164). If we set

Bi(t) = {geCG|G,lg(g) e J, tX < p(g) < X}
we find Y X w7t =t |J| X -2

qe P, ge By(t)
From this it follows at once that

Y X 1> let|J] X—2tXE (19)

qe Py geBy(t)

We are now in a position to apply proposition 1. According to this there are constants ¢4, ¢4, ¢15

so that, if g€ R, g€ G||G, then there is £€ G| G,, so that
|2(6) —8(q)| < erape(g)™ (20)

and cratt(g) < p(h) < ey5p(g)- (21)

Let us make a further observation. Fix t€]0,1[. Then by theorem 7.1 if ¢,,¢,€PF,,

eG|G,, g,€G| G, and
612 6]Gu &< X < (g, we) < X

there is ¢4 > 0 so that, if g,(¢;) # 22(¢s),

181(91) — €2(g2)| > c1/X. (22)
Let J- = B(a,r—c¢;3 X7Y)
By ={qeG|G,lg(g) eI~ kX < p(g) < X}
and Bt = {heG|G, |h(p) e J, c1akX < p(g) < 45X}

keig
C16

-1
Then we shall show that ~ card (B) >( +1) card (B;). (23)

39 Vol. 282. A.


http://rsta.royalsocietypublishing.org/

\

A \

/&

Ly 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y & |
AL A

@ A
/A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

552 S.J.PATTERSON

For if ge B, there is, by proposition 1, % satisfying (20) and (21). By (20), for such a 4,/4€ B'.
On the other hand, by (22) not more that ¢,3/c,g+ 1 elements of B, can give rise in this way to
the same element of B*; (23) follows at once.

Suppose P, has s elements. Choose k£ = ¢. Then (19) and (23) yield

N\ =1
scard (B') > (/—60—6—13+ 1) Yo th | T| X — 2ct2 X
16
As, by (10) |J=| = |J| —2neig X1

we have that, for suitable ¢,,, ¢44
card (B') > ¢y |J| X — 5 X3,

This is the assertion of theorem 1 (ii). So theorem 1 is completely proved except for the proof of
the lemma.

Proof of lemma. Let A be the bilinear map, mapping 4 on to H, p to co and 0 to i. Then we

Z) a,b,c,deR, ad—bc =1,

define, for uecon (H), u represented by (Z

My (u) = a®+ b2 + %+ d2
One checks that if v econ (4) that 1(v) = py(AvA1).
Let G4 = AGA~' and suppose that G¢ is generated by z+— z+ A. Let g€ G4| G4 and suppose g is

b) so that ad —bc = 1. Then

represented by (? d

s ((Z z) ((1) ”1/\)) = (a%+ 0%+ 2+ d?) + 2(ab +cd) An + (a® + %) A%n2.

As g e G4||G4 this takes its minimal value at n = 0; hence

|ab + cd| <

1
(@®+¢%) ~ 2

Since ad — bc = 1 this gives d___a < A
¢ cla®+c®)| " ®

There is ¢;y > 0 so that if ¢ # 0, |¢| > ¢,y (Lehner 1964, p. 88). If ¢ = 0 the problem is easy as

g=<(1) (1)).Thus ‘d 1 |a

1
< | a? +c?

X2

< FA+ e 2
< A 4o

b c

Likewise, zl'-l- m

<A

Thus, if¢ # 0, 6] < 32 |q +- |¢]

(3A+c55) (|a] + Je])-
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Hence 02+d? < (FA+c?)2 ((Ja| + |e])2+ |¢[?)

< A+ ) 3(a+ ).
Thus (@*+¢%) = (14 3(3A+ 32 ~2) L uy (2). (24)
Set 6o = (14+3(3A +e2) %)L,

Define 4, B, C by writing Mo (g ((1) nl/\)) = A+ 2Bn+Cn?

$0 A=py(g), B=(ab+cd)A, C= (a®+c?)A2
The number we are interested in is the number of solutions of
Cn?42Bn+A<LY.

From its definition the left hand side, as a function of 7, has no real roots and a minimum in
[—%, +31]. Thus it can be written as
Cn+0)+4"<7Y,

where |0'| < 3,4’ > 0. This has at most
2 (-——————Y_ A,)é +1
C
solutions. Thus by (24) this is at most
258 p(g)F Y3+ 1.
As Y > p(g) this is at most (2638 +1) (Y/u(g))3,
which proves the lemma.

9. METRIC THEOREMS

In this section we continue the investigations begun in § 3 but now from the view-point of
measure theory. Our model is the so called ‘metric theory’ of diophantine approximation (see
Cassels 1965, ch. vir). Our conclusions will not be quite as sharp as the theorems on which they
are modelled but for ‘practical’ purposes they are just as good.

Throughout this section G is of the first kind.

THEOREM. Let w be a positive decreasing function on [2, oo and suppose there is ¢ > 0 so that

w(2x) [w(x) > ¢. (1)

Let y be a parabolic vertex, if there are any, or a hyperbolic fixed point if there are none. Let A(y) be the set of
es hich

ves for whie |5 —g(0)| < w(u(e))lu(e) (@)

can be solved infinitely often for ge G. Then
Q) ifforsomeK >1, X w(K*) <oo A(y) is of measure 0

n=1

(i) ifforsomeK>1, 3 w(K") =co S~ Ay) isof measure .

n=1

Before proving this let us remark that by Cauchy’s Condensation test if w is decreasing then
% w(n?)[n
n=2

and, if K > 1, > w(K)

n=1

39-2
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converge or diverge together. The first of these is the classical series. It also follows that in the
assumptions of (i) and (ii) the value of X is immaterial.
Let us also note that from (1), if 7" > 1, there is a constant ¢(7") > 0 so that
w(Tx)[w(x) > c(T). (3)
It is a consequence of the theorem that if
w(x) = (Inx)—?

then the assumption of (ii) holds. Thus for almost all points x of §

lx—g(y)| < 1/(n(g) Inpu(g))

can be solved infinitely often with geG.

Except for (1) our conditions on w are the same as those in metric number theory and (1) is not
a very great restriction. Thus this theorem is not much weaker than the classical one. Also the
example with w(x) = (Inx)~! shows that our theorem answers the problem posed by Lehner
at the end of chapter X of Lehner (1964).

Proof. We prove (i). Regard S as a probability space with the Lebesgue measure normalized
to have total mass 1; denote this by P. Let

4, ={xeS§| thereis geG: K" <u(g) <K~ and |x—g(y)| < w(p(e))/n(2)}-
Then, if we set A(g) = {xesS| |x—g(y)| < w(n(g))/ng)}-
4, is the union of 4(g) with K» < u(g) < K»*1. Clearly
P(A(g)) < w(K™)[K™".
By theorem 8.1 or 8.2 there are at most ¢; K»*! such intervals. Hence
P(4,) < ¢y Kuw(K™).
So, by the assumption of (i) nﬁ P(4,) < .

So, by the first Borel-Cantelli lemma the set of points in an infinity of 4, is of measure 0. This
proves (i).

This leaves (ii) which is much less trivial. Let us observe that we need only prove it when
w(x) - 0 as x — oo since the class of such functions is non-empty.

We have to make use of two standard propositions.

ProrosITION 1. Let T be a measurable subset of S and suppose that for any g€ G, g(T) = T (at least up
to a set of measure 0). Then P(T)=0 o 1.

For a proof see Lehner (1964, p. 322).

PROPOSITION 2. Let A be a countable set and let {J | € A} and {J, | € A} be two sets of intervals whose
radii tend to 0. Suppose that the centres of J, and J, are the same, and that |J, | [|J,| is constant. If J,, (resp. J.,)
is the set of points belonging to infinitely many J,, (resp. J,,) then

P(J.)) = P(J2,).
For a proof see Cassels (1950, lemma 9).

From these we will deduce the following proposition:

PrOPOSITION 3. Let w be a positive decreasing function on [2, oo satisfying (1).
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Let ye S and let A(y,w) be the set of x €S for which

|x—g(y)| < w(n(g))/n(e)
can be solved infinitely often with g€ G. Then
P(A(y,w)) =0 or 1.
Proof. Let k be positive and let 4, = Ay, kw).
By proposition 2 P(4,) = P(4,). (4)
LetyeG. Then  y(dy) = {y(x)| lg(y) — | < hw(u(g))/(g) inf. ofien}
= {x] [g(y) =y~ (%)| < kw(u(g))/n(g) inf. often}.

But as y is a diffeomorphism from § to § there is a number d;(y) > 0 so that

lva(y) —x| = di(y) lg(y) —y~2(%)]-
So v(4r) 2 (%] |vg(y) — x| < dy(y) kw(u(g))/n(g) inf. often}.
We know that w(vg) = p(y)*p(g)-
From this and (1) there is dy(y) > 0 so that

w(p(vg)) = do(y) w(n(g))-

Thus ')/(Ak) =2 Adz(y) Elply). (5)
Expressions (4) and (5) imply that, up to a set of measure 0,

y(dy) = 4,
So by proposition 1 P(4,) =0 or 1

which completes the proof.

Now let £ be a real number in ]0, 1] so that the second part of theorem 8.1 or 8.2 is true for
the y of the statement of the theorem of this chapter. Let us remark that we may assume, for any
given ¢, > 0 that w(x) < ¢,. Now set, for K = k1,

4, = {xeS| thereis geG: K" <p(g) < K+ and |x—g(y)| < w(u(e))/r(e)}
and A(g) = {xeS||x—g(y)| < w(u(g)/n(g)}-

4, is the union of A(g) with K™ < u(g) < K**1. By (1) and the fact that w is decreasing there are
constants ¢s,¢, > 0 so that
eyw(Km) K < P(A(g)) < eqw(Kn) K, (6)

From theorem 8.1 or 8.2 it follows that there is a constant ¢; > 0 so that if w(x) < ¢;, and if
K™ < p(g) < K+, K» < p(h) < K™+ then A(g) and A(h) only meet if g(y) = A(y). By theorem
8.1 or 8.2 it follows that there are constants ¢, ¢; > 0 so that

e K™ < card{g(y)| K™ < u(g) < K™} < ¢ K™ (7)
We shall assume henceforth that w(x) < ¢;. Expressions (6) and (7) imply that

cstsw(K™) < P(4,) < cac;w(K™). (8)
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Consider now 4, N 4,,.,,(m > 0). By theorem 8.1 or 8.2and (6) each 4(g) with K® < u(g) < K**+1
meets at most, for some constant ¢ > 0,

¢g(w(K™) K—nKn+m 4 1)
intervals A(h) with K»tm < y(kh) < Krtm+1, Thus, by (6) the intersection of 4,,,,, with
Alg) (K™ < p(g) < K*)
has probability at most ¢, ¢g(w(K™) K~ Kn+m 4 1) w(Kn+m) K=(n+m),
By (7) 4,,is made up of at most ¢g K™ intervals 4(g). So
P(A, N Ayim) < Cqcecs(w(K™) KM+ 1) w(Kntm) K—m
= 466 Cy(w(K™) w(K™+™m) 4 w(Kntm) K=m).
Thus S P(AnnApim) S cateos( D (w(K?) w(KmHm) £w(Kntm) Km))
nz=0

n=0
m>0 m>0
n+m<N n+ms<N
Scegegls( X w(K™) w(Km) + Y w(K™) (K—1)71).
n=0 n<N
m>0
n+m<N
As > P(4,n4,) =X P4,)+2 X P(4;n4;)
n, m<N n<N i<j<N
we find S P(A,n4y) <cgcges( X w(Km) 24 (L4cqc5e5(K—1)71) X w(K™).
n,m<N n<N n<N
Now let My = ¥ P(4,).
n<N

By (8) and the inequality above there are constants ¢, ¢y, so that

Y P(4,nA4,) < cgMF+coMy. (9)

n,m<N
Also, by the assumption of (ii) and (8), as N — o0
My — o0. (10)
We now need an extension of the second Borel-Cantelli lemma.
ProrosITION 4. Let (2, P) be a probability space. Let A,, be a sequence of events and ¢ a positive number

so that > NP(An n4,) <c¢( X P(4,))? (1)
n<N

n, m<
and > P(4,) = . (12)
n=1
Let A, be the set of x € 2 so that x lies in infinitely many A,,. Then
P(4,) = ¢.

Let us assume this for the moment. We shall apply it to the space (S, P) and the sequence of
events A, considered above. (10) shows that (12) is satisfied. Also (9) and (10) show that there
is some constant ¢ so that (11) is satisfied. Thus P(4,) > 0. But, by definition 4(y) 2 4. So

P(A(y)) > 0.
Hence by proposition 3 P(A(y)) = 1. This completes the proof of the theorem.
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The proof of proposition 4 is based on familiar ideas which can be found in Cassels (1965,
ch. vir) and Chung (1960). The proof depends on the following lemma (due in the first place to
Paley & Zygmund).

LemMA. Let X be a non-negative random variable; let p = EX, r* = E(X?). Thenif b < pfr
PX > br} > () -

Proof. This is the same as in Cassels (1965, p. 112).
Let I, be the indicator (characteristic) function of 4. Set

Jo= 3 Ly
A3
Then Ef, = X P(4,).
isn
Also Ja= X IAinAj'
t,j<n
So E(ff)= X P(4,n4))
’b i<n
< o(Ef,)%

Let us apply the lemma to f,. Choose b < ¢~%. Then
P{f, = bE(f2)}} = (¢t —1b)?
Let Sn = {fa = E(f2)}.

By the Cauchy-Schwartz inequality
E(fz) = (Efa)™

Thus, if x € 2 is in infinitely many §,, then

fo = bE(L)

infinitely often. Hence, as Ef,, - co (by (12)) x belongs to an infinity of 4,,.
The set of points in an infinity of §,, is

Nn us,.
N n=2N
But P(US,) = (ct-b)2
n=N
As Q is a probability space PN US,) = (ct-b)
N n=2N
Thus, as b is arbitrary it follows that
P(Ay) = ¢t

This completes the proof.

10. BADLY APPROXIMABLE LIMIT POINTS

In this section we complete our description of the rates of approximation which can be achieved
in a Fuchsian group of the first kind. Our object is to show that the general approximation
theorem 3.2 cannot be sharpened. That this is so in the narrowest sense follows from the results
of § 6. In § 9 we showed that the set of points having the worst possible rate of approximation had
measure 0; there we show that it is as large as possible under this restriction.
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A point x€ Ly is said to be badly approximable with respect to a finite set 4 < Ly if there is
¢ =c¢(x) > Osothatforallaed, geG

lg(a) —x| > ¢lp(g).
As a metric on § we shall use p(a, b) = |arg (ab)]
where arg lies in | —a, +7]. Clearly
(2/m) la—b| < p(a,b) < |a—b|.
In this section G is of the first kind.

TueoreM. Let A be a finite set of parabolic vertices, if there are any, and a finite set of hyperbolic fixed
points otherwise. Then the set of points badly approximable with respect to A has Hausdorff dimension 1.

This is closely related to a famous theorem of Jarnik (1928). If G is of the second kind a similar
construction to the one used below can be used to show that the corresponding setis uncountable.
This shall not be proved here.

Proof. We shall prove the theorem only in the case that G has parabolic elements. The other
case is similar and the construction is by no means as delicate.

It is clear that we may suppose the elements of 4 to be inequivalent. Hence 4 may be assumed
to be a complete set of inequivalent parabolic vertices; 4 = {py, ..., p}, say. If p is any parabolic
vertex then there is p; € 4 and g€ G||G,, so that p = g(p,). The value u(g) is determined uniquely
and we write u(p) for it. Let V be the set of all parabolic vertices. Then theorem 7.1 can be
restated as:

GivenxeLy = S and X > 2 there is pe V with

u(p) < X,
p(x,p) < of(n(p) X)*. (1)
Ifp,qeV, p # q then p(p,q) = ¢'[(n(p) 1(q9))3. (2)

We are now going to construct a subset of the set of badly approximable limit points as a
Cantor set whose Hausdorff dimension can be made as close as we please to 1. The burden of the
proof falls on a construction which is somewhat intricate. It will depend on two parameters ¢, K
whose possible ranges of values will be restricted as the argument progresses. € will be sufficiently
small and K sufficiently large.

Let 7, = {(peVIK» < u(p) < K7}
and W,= U T, ={peV|u(p) < K.

We define inductively a set of intervals {S(¢y, ..., 7,)}, where each 7; runs through a uniformly
bounded set. Also, when S(iy, ..., 1,,7) is defined

S(iyy eveyingd) S S(iny vrin).

We define also a finite subset R(iy, ...,7,) of §(,...,¢,). This has at least three points. The
S(Zy5 +++5 iy, J) are contained in the components of

S(iyy oreyin) ~Rigy vy i)

As a formal start take S(@) = S. We will describe in detail the inductive step although it will
take some time to verify its validity.
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Suppose S (74, ..., 2,) is defined. Set
R(iy, ..yty) = Sty eeusty) NV (3)

Thisis finite as ¥}, ., is finite. We shall see that if K is sufficiently large R(7, ..., 7,) has at least three
elements.

There are two cases to be considered. Suppose first thatz = 0. Then S(@) = Sand R(2) =1,.
S(2) ~ R(@)isadisjoint union of a finite number of intervals and by the claim made above there
are at least three. Let J be one such interval and let ¢,, ¢, be the end-points of J. Then consider
the interval .

e Jo = {xeJ| min (p(x,4;)) > dep(d0 42)}
J=\,
This is non-emptyif e < 1. We will suppose thate < 1 henceforth. The {S(¢,)} we define to be the
{J.} as J runs through the components of $( @)~ R(@). Thus {S(7,)} is a set of intervals at least
three in number.

Now we can deal with the inductive step —that is, n > 0. As §(z;) # S it follows that

Sy esty) #5S.
Thus we can define a branch of argon S(zy, ...,¢,). Theset R(Z, ..., %,) can be ordered by writing
r < ryifarg (r;) < arg(ry). AsS(¢y,...,%,)is aninterval R(iy, ..., 7,) is totally ordered by this order
and we can talk about ‘neighbouring’ points of R(7y, ..., %,). Ifp, ge R(iy, ..., ¢,) let pg be the open
interval lying between them in §(7,, ..., ¢,). The intervals §(7,, ..., ¢,,/) are the intervals, formed
from neighouring p, g€ R(zy, ..., 1,) as

{xepg| min (p(x,p),p(%,9)) > Jep(p,9)}-
If € < 1 all such intervals are non-empty and disjoint. As R(zy,...,7,) has at least three points
there are at least two intervals S(zy, ..., 7,,7). The §(¢, ...,7,,/) can be ordered in any manner —
we need only that j runs through a finite set.
This gives the definition of the §(,,...,%,). However, we still have to justify the steps and
obtain some properties of the S(zy, ..., 7,).
Let us say that xS is under the influence of p at level z if, for ¢ asin (1),

p(x,p) < e(u(p) k)4

We know that, by (1), every x€ S is under the influence at level n of some p with u(p) < K, i.e.
peW,. Observe that if x is not under the influence of p at level # then it is not under the influence
of p at level m if m > n. We show that, if K is sufficiently large, that the points of S(zy, ...,1,) are
notunder theinfluence ofanyveW,, atlevel 4+ 1. Forletx € §(¢y, ..., 7,,) and suppose that xis under
the influence of veW,, at level n+ 1. From the definition of $(,, ..., ,) there are

p, QER(il’ A Z.n—l)
which are neighbouring and so that

S(iy, -0y 20) = {x€pg|min (p(x,0),p(%, 9)) > Fep(p, 9)}-

As R(iyy .oyt q) =8ty eeyinq) NV,

it follows that no point of ¥, lies in (7, ..., %,). So, by induction, no point of W, liesin §(zy, ..., 7,).
Thus Rligy evvyiyy) = S(igs eevsin_s) 0 W

Thus v¢pg, and as x € pg, p(v,x) > min (p(x,p), p(x,q))

and p(v,x) = min (p(v, ), p(v, 9))-

40 Vol. 282. A.
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If x is under the influence of v at level n+ 1 and v # p, ¢ then
o(p(v) Kv)~4 > min (p(v, ), p (2, 9))-
By (2), as p, g€V, min (p(2, ), p(v,9)) > ¢'p(v)"F K-,

On comparing these last two inequalities we find a contradiction if K > (¢/¢")? which we shall
assume henceforth.
If, on the contrary, v = p (or ¢) then, by (2),

c(u(p) Kv*1)=% > min (p(x, ), p(%,q))
> ep(h,9)
> ec' (u(p) p(q))*.

Thus x(q) > (2¢/c'e)? K»+1. This is impossible, as gV, if

ec’\?

K(QE) > 1 (4)

Thus no point of S(y, ...,%,) is under the influence of veW,, at level n+ 1. But we remarked

This we shall also assume.

above that, by (1), every point of § is under the influence of a point of W, ,, at level n+ 1. Thus
every point of §(iy, ..., 7,) is under the influence of a point of ¥, at level n + 1. In other words,
for each xS (iy, ...,1,) thereis vel, |, so that

p(v,x) < c(u(v) Kn)=4. (5)
Further, for v,,v,€W,, by (2) we have

¢ ((vy) p(vg))

p(vy,05) =
> 'K, (6)

Now, if ¢ < %, when we use (2) and recall that p, geV},, we have

(s wves )| = (1 =€) p(£,9) (7
> 'K (8)
We shall assume that e < {. Let
~ Ba,r) = {xeS|p(a,x) <r}.
IfveV, it influences at level z+ 1 the points of
B(v, ¢(u(v) Kvt1)~1) < B(v, cK—- D). (9)
Now we shall show that if |S(Egs oevs )| = TeK-®HD, (10)

then R(iy, ..., 7,) has at least three points.

Recall that every point of §(¢y, ..., ,) is under the influence, at level z+ 1, of a point of V, ;.
Let &, £ be the end-points of S(¢y, ...,7,). If v¢S8(4y, ..., 1p41), VEV, 44 it can influence at level
n+ 1, at most, by (9), in S(¢y, ..., 7,), the set

S(il, veey in) n B(g()’ 5K~(n+%)) N B(gl; (,‘K‘("H‘%)) .
Let T'(iy, ...,%,) be the complement in §(zy, ..., %,) of this set. By (10)
I T 21, ol )l > 5eK—(td), (11)
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Every point of T'(zy, ...,1,) is under the influence, at level n+ 1, of at point of
S(ila .. ')in) n I/n+1 = R(il, ceey in).

By (9) and (11) at least three points are required. Hence R(7y, ..., 7,) has at least three points if
(10) is true. But this is so, from (8), if
K > (14¢/c")?,

which we shall assume. This shows that the inductive definition was valid.
Now we must establish some further properties. Let £, &, be the end-points of § (¢, ..., 7,) and let

R(tyy...p1,) = {v3, Vg, ..., U}
We shall assume that there is a branch of arg on $(7y, ..., ,) so that
arg{£,) < arg(v,) < arg(v,) < ... < arg (v,) < arg (&,).
By (10) there are 54,7, €S (4, ..., ,,) s0 that
P(E0sM0) = p(E1571) = (3¢[2) K=+D. (12)

But 74, 9, are under the influence of ug, u, €V, ,, at level n+ 1. Thus for j = 0, 1,

plupm;) < c(pla) K)
< K-, (13)
Thus, by (12) u; €81y, oenyiy)
o) u;€R(iy, ...y 7).
So by (12), (13) Pl 0r) < <5c/2> K-+, } y
plEsu) < (5f2) K049 1
Let a be an integer 0 < ¢ < ¢ and let
S(igy eeny i, a)
be the interval between v, and v,,, constructed as above. Then, by (7),
IS(il’ . I = (l—e p(va, va+1)
Thus, by (14), )
IS (Ess o5 m) | = p(E0s v1) +P(v1,05) + -+ (Vp_1, p) +p (v, &)
< BEK=D 4 (1 =€) 3 |S(iy +voy iy )|
a=1
-1 |S(; ;
By (8) |S(Zy, ..0sipn, a)| 51— IOcK N (15)

a=1 |S(21> ety Zn) I -
By (1), as the mid-point of p, p,, is under the influence some veV,,,, to level n+ 1, by (9)

p (Paﬁpa+1) < 20K+,
Thus |S (21 v tpy @) | < 26K~ 4D, (16)

|S(i1,'o',in, fl SifK“%, (17)

[P\t - Iy 4) ]
Stnni)] ¢

So, by (8),
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Likewise, by using the estimates in reverse,

[ sty @] ¢ fy
Slin )]~ B 18)
In particular, (18) shows that t < (4efc’) K3 (19)

so each ¢; runs through a uniformly bounded range. Also, if a # b, by (2) and (16),
p(S(iI: ] in’ a): S(il: AR l'fm b)) > %e(p(pa’pwrl) +P(ﬁb:pb+1))
€C'K—(n+1)

= %G(I'Cﬁl K- IS(lls ceey ln) | (20)

\

\Y

Thus, in view of (17)—(20), theorem 1 of Beardon (1965) can be applied to show thatif aissuch

that, for all (7, ...,2,), t=1(18(; o)
S (lﬁ’__’_"rﬁ)l) > 1,

. . i=1 IS(ZD ) ln)l
then the HausdorfT dimension of
T=N U S@y...3,)
N (i1y ey i)

is at least o Actually, in Beardon (1965), this is stated only if ¢ is constant but it is easy to check
that it is also true if ¢ is uniformly bounded; this is true by (19).
Suppose there are X, y€]0, 1[, Fe Z,_ and x, for 1 < a < Fso that

7
O<x, <X <1, Xx,>1—1.
a=1

Then, for swith 0 < s < 1

B

K 1
2| [Inx,|xgde

a=1¢s

1 F
> |lnX|fq aé]leldt

F
S
Xg— 24 %y
a a=1

I

1

a
> (1—3)|InX| X 1,
-1
Thus if s = 1 — |In X|~1(1 —y)~1 then ’
e
2 x> 1
a=1

Applying this to our case, and using (15) and (17) we see that the dimension of 7" exceeds

£ (n (KD (100) ((EELDAL .

Apart from the requirements that K be sufficiently large and e sufficiently small the only

ec’\2

4
Choose €= ;;C—K—%.

restriction on K and e was (4), that is

Then the Hausdorff dimension of 7 exceeds

1-0(1)(K¥InK)) ,
for K large.
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On the other hand 7'is a subset of

lo(x,p) > e (Km+iu(p))~4, pe, (alln)} < (xlp(x, ) > (ec'|KH) p(p) %, peV, (all )}
| = {xlp(x,p) > (ec'|K) p(p)~1 all pe V).

This set has therefore dimension exceeding

1-0(1/(K¥nK))
and this proves the theorem.

The contents of this paper form a substantial part of a Ph.D. thesis submitted to the University
of Cambridge. I would like to thank my supervisor, Dr A.F. Beardon, for suggesting this topic
and for his encouragement and advice.
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